College of Engineering
uck | and Computer Science

Specifying Security Properties of Protocols in the Java Modeling Language:

UNIVERSITY OF CENTRAL FLORIDA

ProVerif

out(c, ()5

ProVerif is an automatic crypotographic
protocol verifier [1] which accepts a
description of a cryptographic protocol written
in the syntax of a typed pi calculus which
includes built in cryptographic primatives.
ProVerif can securely prove strong secrecy [2]
and authentication [3].

JML Specifications

0 && received

requires sent
ensures

The Java Modeling Language (JML) [5] is a
behvaioral interface specification language that
specifies the behavior of Java modules with
preconditions (requires) and postconditions
(ensures) contracts. JML allows the use of

"model only" fields to specil
behavior, e.g. the variables sent and
recieved.

Achieving Code Level Assurance

Luke M

Gary T. Leavens

luke.myers@knights.ucf.edu Leavens@ucf.edu

Department of Computer Science

Our Contribution: The Translation and Verification Process

ProVerif to JML Specifications

We start with the formal speci
ProVerif tool. We developed a compiler, using the ANTLR parser
generator [9], that parses the typed pi caleulus file used by ProVerif.
The compiler recognizes sending a message, denoted by the out

ication that has been verified by the

keyword, and examines the type of the items being sent to
determine the types assigned to the generated data fields.
Additionally, the compiler creates a method responsible for sending
JML specifications that ensure the

this message and generates
result from this method is equivalent to what is being sent in the
formal protocol specification.

JML Specifications to Development

The developer fills in the automatically generated Java class
skeleton by implementing the method stubs. The JML specifications
serve as the contract the Java code that implements the methods
must adhere to but outside of this requirement the developer is free
v they wish. Thi

to design the implementation in any w allows the
developer to optimize the data structures and fine details of the
implementation for goals such as better integrating it into a larger
application or extracting more performance from it.

Development

Type Checking to Verified Code

The developer uses the OpenJML tool [8] to verify that their
implementation satisfies the constraints specified in the JML
statements. OpenJML is tool which uses a "Satisfiability Modulo
Theory" [6] solver to generate a mathematical proof that the Java
code satisfies the constraints described. It is po
OpenJML tool to be unable to generate a proof for a particular
implementation and the developer will have to return to the

le for the

Development phase and alter the implementation. After creating an

altered implementation, the developer proceeds through the

workflow and sees if the OpenJML tool can generate a proof for the

new Java code.

Development to Type Checking

The developer annotates their code using standard Java annotation
syntax with the annotation of GHidden to indicate that variable is
specified in
the formal protocol specification or it has been encrypted. The
developer uses the annotation of @Open for all other variables to
indicate that they are not critical to the security of the system and
can be transmitted at any time. The type annotations for the data.
fields automatically generated by our compiler from the formal
protocol description are also automatically generated by our
compiler. The types are checked with a custom module in The
Checker Framework [7].

secret and should not be transmitted unless otherwis

Background: Tt is vital that computer communication protocols are not only securely designed but also

requires sent == 0 && received

Verified Code

requires sent 0 && received

ensures

&& sent

n BitSet sendl((
@0pen)
/* ...implementation...

1
}

Once the OpenJML tool is able to verify the
code, the process is complete. The Java source
code file, with the type annotations and JML
specifications, is compiled by the standard
Java compiler into executable byte code.

Type Checking

requires sent == 0 && received
ensures

be which

These security type annotations desc:
information should be kept secret (@Hidden)
and which should be allowed to be transmitted
(@Open). Our custom type checker analyzes
these types to check for accidental leakage of
secret information.

References

securely programmed. The importance of this problem is exemplified by a recent bug called Heartbleed found ensures

in the Transport Layer Security protocol, which is responsible for securing communication between websites

|1] Blanchet and Bruno. An Efficient Cryptographic Protocol Verifier Based on Prolog Rules, 2001.

[2] B. Blanchet. Automatic proof of strong secrecy for security protocols. In IEEE Symposium on Security

and web browsers, that made vulnerable an estimated 24-55% of the 1 million most popular websites [4].
Problem: Verify that the implementation (code) of a cryptographic protocol is performing the protocol in
accordance with the security properties of the formal specification of that protocol.

Approach: We build upon an existing tool which verifies formal protocol specifications and compile the
specification into implementation language specifications which are then verified by our type checker and an

existing implementation language verifier.

Contribution: Existing approaches to this problem fall into two categories. The first category is comprised
of solutions that take a protocol specification and translate directly from that specification into a fully
implemented program. The second category is comprised of solutions that take a fully implemented program
and translate it into a protocol specification which they then attempt to prove is equivalent to the reference
protocol specification. Our approach falls into a novel third category of compiling a protocol specification
into a set of implementation language specifications. Compared to existing solutions that generate the
completed program from the protocol specification, our tool allows more flexibility in the exact
implementation details of the program while avoiding the unreliability of attempting to translate a program
into a protocol specification that is equivalent to the reference.

&& sent iy

. Heidelberg, 2002.
BitSet sendl(

{/* . mplementation... */

We

Software Enginee;
The developer writes code to implement the
skeleton generated by
is contrary to existing

methods in the Java class

our compiler. Thi
solutions as the developer writes the code
instead of the compiler, so the developer is free
to optimize the code for efficiency or other

2008, 2008.

concerns without voiding the security
guarantee.

[8] OpenJML. http://www.openjml.org/
[9] TJ Parr and RW Quong. ANTLR: A Predicated. Software—Practice and Eaperience, 1995.

and Privacy, 2004. Proceedings. 2004, pages 86-100. IEEE.

[3] Bruno Blanchet. From Secrecy to Authenticity in Security Protocols. pages 342-359. Springer, Berlin,

[4] Zakir Durumeric, James Kasten, David Adrian, J. Alex Halderman, Michael Bailey, Frank Li, Nicolas

ver, Johanna Amann, Jethro Beekman, Mathias Payer, and Vern Paxson. The Matter of Heartbleed.
IMC "14, pages 475-488, New York, NY, USA, 2014. ACM.

[5] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML. ACM SIGSOFT

ng Notes, 31(3):

[6] Greg Nelson and Derek C. Oppen. Simplification by cooperating decision procedure
Program. Lang. Syst., 1(2):245-257, October 1979

[7] MM Papi, M Ali, TL Correa Jr, and JH Perkins. Practic:

may 2006.

ACM Trans.

al pluggable types for Java. Proceedings of the

